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Multivalent counterions can induce an effective attraction between like-charged rodlike polyelectrolytes,
leading to the formation of polelectrolyte bundles. In this paper, we calculate the equilibrium bundle size using
a simple model in which the attraction between polyelectrolytessassumed to be pairwise additived is treated
phenomenologically. If the counterions are pointlike, they almost completely neutralize the charge of the
bundle, and the equilibrium bundle size diverges. When the counterions are large, however, steric and short-
range electrostatic interactions prevent charge neutralization of the bundle, thus forcing the equilibrium bundle
size to be finite. We also show that if the attractive interactions between the rods become frustrated as the
bundle grows, finite-size bundles can be obtained with pointlike counterions.
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The mean-field Poisson-BoltzmannsPBd theory predicts
that two identical macromolecules in any salt solution will
repel each otherf1g. However, the presence of multivalent
counterions can actually induce anattraction between like-
charged polyelectrolytessPEsd. This has been experimentally
observed for several different PEs, including double-stranded
DNA f2,3g, filamentous actinsF-actind f4,5g, microtubules
f4,6g, the filamentous bacteriophages fd and M13f4,7g, and
the tobacco mosaic virusesf4g. Computer simulations of
both homogeneously charged rodsf8–11g and realistic DNA
moleculesf11–13g unambiguously show that attractive inter-
actions can arise solely from counterion correlations not in-
cluded in the PB theory. Several theories that take these cor-
relations into account—including perturbative expansions of
the PB theoryf14,15g, structural-correlation theoryf16–18g,
and strong-coupling theoryf19g—obtain an attractive inter-
action between two rods. It is still a matter of discussion,
however, as to which of these theories is the most appropri-
ate description of the correlation-induced attraction seen in
experiments and simulations. Furthermore, it is unknown
whether the interactions between multiple rods is pairwise
additive or notf17,20,21g.

Under experimental conditions in which the interaction
between PEs is attractive, the PEs typically form dense, or-
dered bundles of a well-defined sizef2–7g, rather than pre-
cipitating into a PE-rich phase. In this paper, we theoretically
investigate the thermodynamic stability of these bundlessif
bundle growth is not limited thermodynamically, then it must
be limited by kinetic barriersf21–23gd. We assume that the
attractive interactions are pairwise additive, but do not
specify the precise nature of the counterion correlations.
Rather, we simply introduce a phenomenological parameter
g to characterize the attractive energy between two PEs in a
bundle.

Consider, then, an aqueous solution of volumeV with N
identical rodlike PEs of lengthL, radiusa0, and a uniform
linear charge density −el0 sthe aggregation of flexible PEs

has been considered inf22gd. We treat both the aqueous so-
lution and the rods as a uniform dielectric with dielectric
constante; that is, we ignore all image-charge effects. Posi-
tive monovalent andq-valent counterions, as well as nega-
tive monovalent co-ions, are present; the entire system is
charge neutral and in chemical equilibrium with a salt bath.
The correlation-induced attraction between the PEs leads to
the formation of PE bundles of some size at equilibrium. For
simplicity, we assume that only multivalent ions can enter
inside the bundlesthe effects of competitive binding with
monovalent ions will be discussed in a future paperf23gd.
Also, we assume that the solution of rods is dilute, i.e., the
volume fractionf;Npa0

2L /V!1. As a result, we can em-
ploy the cell model, where each bundle and its surrounding
ions are enclosed in a Wigner-SeitzsWSd cell, and interac-
tions between cells are ignored. We work in the long-rod
limit sL→`d, so that the translational entropy of the bundles
is negligible. Finally, we assume that the equilibrium distri-
bution of bundle sizes is sharply peaked, so that all bundles
are approximately the same size. Given these assumptions,
the free energy can be written as

bF =
N

M
fbFent+ bFES+ bFattrg + NbFcorr, s1d

where M is the number of rods in each bundle andb
;1/kBT, kB being Boltzmann’s constant andT the tempera-
ture.bFent includes the entropic and chemical potential terms
for the ions in one WS cell;bFES is the mean-field electro-
static energy of a WS cell;bFattr is the total attractive energy
for a single bundle; andbFcorr is the correlation energy for
ions condensed on one rod.

The ions contained within each WS cell can either be
located inside or outside of the bundle. We assume that the
former are uniformly distributed in the volume available in-
side the bundlesthe inhomogeneity of this distribution is
negligible for large bundlesd. In order to describe the ion
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distribution outside the bundle, we use a modified Debye-
Huckel approximationsDHAd similar to Manning’s counter-
ion condensation theoryf24g. It is well known that the DHA
is valid sufficiently far from a charged surface, where the
electrolytic solution is dilute. However, for highly charged
surfaces, the bare charge must be replaced by a renormalized
charge due to counterion condensationf25g. To account for
this, we allow ions to condense into a Stern layersof width
w!Rd surrounding the bundle. We assume that the ions in-
side the layer are uniformly distributed. The ion distribution
functionsnssxWd swheres= ±1, q is the ionic speciesd outside
the layer are determined using the DHA. The widthw of the
Stern layer is set arbitrarily, and counterion correlations of
the ions in the Stern layer are ignored; although these factors
will quantitatively affect the amount of condensation, they
do not alter the scaling behaviour of the free energy with the
bundle size. Assuming the ions are pointlike, and discarding
terms that contribute constants to the free energyf26g,

bFent= o
s
Sns

2
E

r.R

d3xFnssxWd
ns

− 1G2

+ nsastL

+ ls
stLFlnS ls

st

nsast
D − 1GD + lqMLFlnS lq

nqab
D − 1G ,

s2d

wherens is the bulk concentration of ion speciess, lqL is the
number of multivalent ions condensed on each rod in the
bundle,abML=pMLsa2−a0

2d is the volume available to the
ions inside the bundles2a being the center-to-center spacing
of the rods in the bundled, ls

stL is the number ofs-valent ions
in the Stern layer, andastL<2pRwL is the volume of the
Stern layer.

In order to calculate the mean-field electrostatic energy of
the system, we model each bundle as a homogeneously
charged cylinder of radiusR<aÎM sso thatVcyl<Vbundled,
and the Stern layer as a uniform surface chargesi.e., we set
w=0d. That is, −enbsxWd=−usR−rdel /pa2 and enstsxWd=usR
−rdelst/2pR are the charge distributions of a bundle and its
Stern layer, respectively, where −el;−esl0−qlqd is the
renormalized linear charge density of one rod in the bundle
andelst;esl1

st+qlq
st−l−

std is the linear charge density of the
Stern layer. The electrostatic free energy is given by

bFES=
lB
2
E E d3xd3x8

uxW − xW8u
ntotsxWdntotsxW8d, s3d

where lB=e2/ekBT is the Bjerrum lengthslB<7.1 Å in wa-
terd andentotsxWd=eossnssxWdusr −Rd+enstsxWd−enbsxWd is the to-
tal charge distribution for a WS cell.

The correlation of ions condensed on two neighboring
rods in the bundle leads to the formation of a “bond” of
energy Ebond=−gkBTL between the rods, so thatbFattr
=bEbondB, whereB is the number of bonds in a bundle. It has
been observed experimentally that the rods in the bundle are
hexagonally packedf2,3,5,6g; in this case, it can be shown
thatbFattr<−gLs3M −3.6ÎMd for all M ù2. The first term is
the bulk attractive energy; the second term is an effective
surface tension due to the fact that the rods on the bundle

surface have fewer neighbors than the bulk rods. Thus, each
bundle in our model is equivalent to a homogeneously
charged cylinder with an effective surface tension in the
presence of counterions. This is very similar to the Rayleigh
instability f27g of a charged water droplet in the presence of
counterionsf28g, and to the aggregation of polyelectrolytes
in poor solventf28,29g.

The number of ions inside each bundle and its surround-
ing Stern layer, as well as the ion distributions outside these
regions, minimize the total free energybF ssubject to the
constraint of overall charge neutralityd. For the ion distribu-
tions nssxWd, this minimization yields the expected Debye-
HuckelsDHd distributions,nssxWd=nsf1−scsxWdg, where the di-
mensionless electrostatic potential

csrd =5
lBl

a2 sr2 − R2d −
2lBltotK0skRd

kRK1skRd
, r , R

−
2lBltotK0skrd

kRK1skRd
, r . R.6 s4d

Here, −eltot=−elM +elst is the total linear charge density of
the bundle and its Stern layer,k2=4plBoss

2ns, andKnsxd is
the modified Bessel function of the second kind of ordern.
Clearly, bothg and bFcorr should depend onlq. However,
since the precise nature of the counterion correlations is not
specified in our model, we ignore this dependence; that is,
we calculatelq at the mean-field level. Discarding all con-
stant terms, the free energy Eq.s1d can be written asbF
=Nfa2F1/R2+F2Lg where F1 is given by the final three
terms of Eq.s2d and

F2 =
3.6ga

R
+

lBl2R2

4a2 +
lBa2ltot

2 K0skRd
kR3K1skRd

. s5d

Minimization of bF with respect tolq andls
st gives

lnS lq

nqab
D −

lBqlR2

2a2 −
2lBqltotK0skRd

kRK1skRd
= 0, s6d

lnS ls
st

nsast
D −

2lBsltotK0skRd
kRK1skRd

= 0, s= ± 1,q. s7d

If we solve Eqs.s6d ands7d, we can see thatltot approaches
a constant at largeR ssee inset of Fig. 1d. Indeed, in the limit
R→`, the second term in Eq.s6d—which is due to the elec-
trostatic self-energy of the bundle—dominates, causingl
→ s2a2/ lBqR2dlnsl0/qnqabd and ltot→Ml / s1+kwd. Thus,
as the bundle grows, additional counterions condense inside
the bundle, so that the total charge of the bundle remains
constant.

The equilibrium bundle radiusReq is given by the value of
R that minimizes the free energy. Figure 1 shows the free
energy as a function ofR for various values ofnq. We can
see that as soon as the attractive energy is strong enough to
induce bundle formation,Req→`. This is due to the large
amount of counterion condensation inside each bundle,
which causes the entropic and electrostatic resistance to
bundle growth to be weak: in the limitR→`, 1 /MsbFES

+bFentd,−1/R2. This resistance is overwhelmed by the at-
tractive energybFattr /M ,1/R, thus causing the equilibrium
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bundle size to diverge. This result is consistent with earlier
work on penetrable water dropletsf28g and PEs in poor sol-
vents f28,29g. It is important to note that finite-size aggre-
gates can be obtained in these systems when the charge of
the aggregates is small enough to avoid significant counter-
ion condensation. This region is not accessible in our system,
however, because like-charge attraction only occurs when
there is significant counterion condensation.

As stated above, these results do not take into account the
dependence ofg and bFcorr on lq. It is important to note,
however, that the asymptotic resultsulu,1/R2 and bF
,1/R−1/R2 hold for any such dependenceseven those that
cause overchargingd: When the bundle is large, the long-
range mean-field self-energy of the bundle dominates over
the short-range correlation energy, causing the renormalized
charge density of the bundle to be small and the resistance to
bundle growth to be weak.

In the model discussed above, the density of ions inside
the bundle can, in principle, be arbitrarily high. In reality,
however, steric interactions prevent the ion density inside the
bundle from exceeding the close packing density. Further-
more, when the density of ions in the bundle is high, the
mean-field electrostatic repulsion between the ions confined
to the small volume available inside the bundle is severely
underestimated by our modelswhich smears out the charge
of these ions throughout the entire bundled. This additional
short-range electrostatic repulsion effectively increases the
size of the ions in the bundlesi.e., it prevents the ion-ion
separation from becoming too smalld. If we treat the ions
inside the bundle as finite-size particles with an effective
volume vef f, then bFent→bFent+MLfsL−lqdlns1−lq/Ld
+lqg, whereL<ab/vef f is the maximum number of ions per
unit length that can condense on a single rod. This adds a
term −lns1−lq/Ld to the right-hand side of Eq.s6d, which
diverges aslq→L, thus forcinglq,L for any bundle size
R. If l* ;l0−qL.0, then the asymptotic resultl,1/R2 no
longer holds; rather,l→l* for largeR. As a result, the self-
energy of the bundle—in particular, the second term in Eq.
s5d—diverges at largeR, leading to the formation of finite-
size bundles at equilibrium, as shown in Fig. 2. Note that for
DNA, where 1/l0=1.7 Å, a0=10 Å, and a<14 Å in the
presence of trivalent cobalt hexamminef2,3g, l* .0 when
the effective radius of the ionsdef f*7 Å.

We can use this model to predict the equilibrium behavior
of the system for different multivalent salt concentrations
ssee Fig. 2d. At small nq, the total attraction is not large
enough to overcome the electrostatic repulsion between rods,
and no minimum inbFsRd is obtained. Asnq increases, how-
ever, more ions enter inside the bundle and reduce the elec-
trostatic repulsion for small bundles, thus creating a local
minimum in bFsRd that is primarily determined by the bal-
ance of the first two terms in Eq.s5d, Req<as7.2g / lBl*2d1/3.
Notice that the bundling transitions is discontinuous, and that
the bundle size is invariant upon further increases innq, as
has been recently observed for microtubule bundlesf30g.

The above model implicitly assumes that the rod-rod
spacingsi.e., abd is independent ofR. If this spacing in-
creases as the bundle grows, more counterions can enter the
bundle, thus decreasing the electrostatic resistance to bundle
growth. However, the correlation energy will also decrease
as the spacing increases. Therefore, in order for our assump-
tion to be valid, the rod-rod attractive interaction must have a
sharp minimum that prevents the spacing from increasing as
the bundle grows.

Up to this point, we have assumed that the attraction be-
tween neighboring rods is independent of the bundle size.
There are several mechanisms, however, that can frustrate
the bonds between rods as the bundle grows. For short-
ranged, pairwise additive interactions, only a fraction of ions
in a narrow “contact stripe” between the two rods become
correlated with one anotherf17g. When rod-rod dimers form,
the size of the contact stripe is maximized. However, each
rod has one contact stripe per bond, and these stripes cannot
overlap if the interactions are pairwise additive. Therefore, if
the contact stripe for dimers is wide enough, the stripes will
have to shrink for a rod with many neighbors, causing the
bond energy to decrease. Alternatively, a nonuniform PE
charge distribution results in a relative orientation that mini-
mizes the electrostatic repulsion between two neighboring
rods. Achieving the optimum orientation between a rod and
every one of its neighbors may cost energy or be physically
impossible; in either case, the bond energy effectively de-
creases as the bundle grows. Indeed, it has been experimen-
tally observed that F-actin filaments undergo twist distortions
when forming bundles to reduce the electrostatic repulsion
between neighboring rodsf5g. If we write bFattr

FIG. 1. Free energy differenceDFsRd;FsRd−Fs100ad for a0

=1 nm, a=1.4 nm, w=1 nm, l0
−1=0.17 nm, n1=10 nM, q=3, g

=1.4 nm−1, andnq=0.1 mM ssolid lined, 10 mM sdashed lined, and
1 mM sdotted lined. Inset: ltotsRd for the above parameter values
with nq=10 mM. The dashed line indicates the asymptotic value of
ltot ssee textd.

FIG. 2. Free energy differenceDFsRd;FsRd−Fs100ad for finite
size ions inside the bundle, withg=1.7 nm−1 and l* =0.01l0 sthe
remaining parameter values are the same as in Fig. 1d. Inset:DFsRd
for frustrated attractive interactions, withj=0.1, fmax=2, and g
=1.7 nm−1 sthe remaining parameter values are the same as in Fig.
1d.
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=−gLMfsB/Md, whereB/M ;b is the average number of
bonds per rodsb,3 for hexagonally ordered bundlesd,
thenfsbd=b for unfrustrated interactions. To encapsulate the
effects of bond frustration, we chosefsbd to be a hyper-
bola that approaches the asymptotef=b for small b
and f=fmax for large b, fsbd= 1

2sb+fmaxd− 1
2ufmax

−buÎ1+j / sb−fmaxd2. In other words, the total attractive en-
ergy gained for each rod in the bundle saturates asb in-
creases; by adjustingfmax andj, we can control the saturat-
ing value and rate of saturation, respectively. As shown in the
inset of Fig. 2, a local minimum inbFsRd can be obtained
for certain values offmax and j. Unlike the minimum ob-
tained with finite-size ions, this effect cannot lead to arbi-
trarily large bundles; rather, the onset of frustration must
occur at a sufficiently small bundle size, or the resistance to
bundle growth will be too weak to prevent infinite bundles.

In summary, we have presented a simple model to calcu-

late the equilibrium bundle size of highly charged, rodlike
polyelectrolytes in the presence of multivalent counterions.
For pointlike counterions and unfrustrated attractive interac-
tions, the equilibrium bundle size diverges. Finite bundles
can be obtained at equilibrium if the short-range interactions
between the ions inside the bundle prevent the ions from
neutralizing the charge of the bundles, or if the interactions
between rods in the bundle become frustrated as the bundle
grows.
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